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Abstract
Growing evidence suggests that aerobic fitness benefits the brain and cognition during

childhood. The present study is the first to explore cortical brain structure of higher fit and

lower fit 9- and 10-year-old children, and how aerobic fitness and cortical thickness relate to

academic achievement. We demonstrate that higher fit children (>70th percentile VO2max)

showed decreased gray matter thickness in superior frontal cortex, superior temporal

areas, and lateral occipital cortex, coupled with better mathematics achievement, compared

to lower fit children (<30th percentile VO2max). Furthermore, cortical gray matter thinning in

anterior and superior frontal areas was associated with superior arithmetic performance.

Together, these data add to our knowledge of the biological markers of school achievement,

particularly mathematics achievement, and raise the possibility that individual differences in

aerobic fitness play an important role in cortical gray matter thinning during brain maturation.

The establishment of predictors of academic performance is key to helping educators focus

on interventions to maximize learning and success across the lifespan.

Introduction
Aerobic fitness and physical activity are beneficial to cognitive and brain health during devel-
opment (see [1] for a review). Higher levels of aerobic fitness during childhood are associated
with superior cognitive control, memory [2–8], and academic achievement [9,10]. Growing
evidence suggests that these aerobic fitness differences in cognition and academics have a bio-
logical basis in the brain. In particular, higher fit children have larger structural brain volumes
in the hippocampus and dorsal striatum, two subcortical regions critical for memory and learn-
ing [3,4], as well as more efficient brain activation patterns (via functional magnetic resonance
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imaging [fMRI] and event-related potential [ERP] measures) during attentional and interfer-
ence control tasks [11–12; 5–8], relative to lower fit peers.

It is possible that aerobic fitness during childhood also influences the structure of cortical
systems (as found in older adults, e.g., [13–14]), which may play a role in cognition and school
performance. Cortical structure can be measured by determining cortical thickness, calculated
by generating models of gray/white matter boundaries and pial surfaces, and calculating the
distance between these two surfaces [15–18]. Normative maturation of cortical thickness pro-
vides a context to formulate predictions about how aerobic fitness might influence this brain
measure in children. One longitudinal study scanned 45 children every 2 years from age 5 to 11
and demonstrated cortical thinning with development in dorsolateral frontal cortex, occipital-
parietal areas, and anterior and posterior/inferior temporal regions (with rates of loss of
approximately 0.1–0.3 mm per year) [19]. Furthermore, cortical thinning in the dorsal frontal
and parietal regions was correlated with improved performance on a test of verbal intellectual
functioning (vocabulary test of the Wechsler Intelligence Scale) [19]. In fact, research suggests
that gray matter loss occurs as part of the sculpting of the brain into the fully functioning adult
nervous system [19–20].

Higher levels of aerobic fitness are also known to predict better academic performance (e.g.,
mathematics, reading, English) during childhood [9–10; 21–22], and significant improvements
in scholastic performance are associated with increased participation in physical activity during
the school day [23–24]. However, little is known about the neural markers for academic suc-
cess. In terms of neuroelectric indices, the P3 ERP component, reflective of attentional pro-
cesses involved in stimulus evaluation and inhibition, has been suggested as a marker of
reading and arithmetic achievement during childhood [25]. Here, we are the first to examine
whether brain structural differences in higher and lower fit children relate to academic achieve-
ment. Understanding predictors of academic success, such as aerobic fitness and brain struc-
ture, has important implications, as standardized test performance can determine funding and
effectiveness of educational programs as well as forecast a student's future scholastic success
[26–27].

Given evidence that aerobic fitness is associated with specific measures of brain health and
cognition during child development, we predicted that individual differences in aerobic fitness
would be associated with cortical thickness, which would in turn be related to academic perfor-
mance. Specifically, because cortical thinning is associated with brain development and matu-
ration, we predicted that higher fit 9- and 10-year-old children would show decreased cortical
thickness across the cortex, which would relate to better performance on the Wide Range
Achievement Test (WRAT-3) of reading, spelling, and arithmetic achievement, relative to
lower fit children.

Materials and Methods

Participants
Our study was reviewed and approved by the Institutional Review Board of the University of
Illinois at Urbana-Champaign. Preadolescent 9- and 10-year-old children were recruited from
East-Central Illinois. Children were screened for several factors that influence physical activity
participation and cognitive function. The Kaufman Brief Intelligence Test (K-BIT) [28] was
administered to each child to obtain a composite intelligence quotient (IQ) score including
both crystallized and fluid intelligence measures. Participants were excluded if their scores
were more than 1 standard deviation below the mean (85%). A guardian of the child also com-
pleted the Attention-Deficit Hyperactivity Disorder (ADHD) Rating Scale IV [29] to screen for
the presence of attentional disorders. Participants were excluded if they scored above the 85th
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percentile. Pubertal timing was also assessed using a modified Tanner Staging System [30] with
all participants at or below a score of 2 on a 5-point scale of developmental stages. In addition,
socioeconomic status (SES) was determined by creating a trichotomous index based on three
variables: participation in a free or reduced-price meal program at school, the highest level of
education obtained by the child’s mother and father, and the number of parents who worked
full-time [31].

Furthermore, eligible participants were required to (1) qualify as higher fit or lower fit (see
Aerobic Fitness Assessment section), (2) demonstrate right handedness (as measured by the
Edinburgh Handedness Questionnaire) [32], (3) report no adverse health conditions, physical
incapacities, or neurological disorders, (4) report no use of medications that influenced central
nervous system function, (5) successfully complete a mock Magnetic Resonance Imaging
(MRI) session to screen for claustrophobia in an MRI machine, and (6) sign an informed assent
approved by the University of Illinois at Urbana-Champaign. A legal guardian also provided
written informed consent in accordance with the Institutional Review Board of the University
of Illinois at Urbana-Champaign.

Forty-eight children were included in the analysis, including 24 higher fit participants (14
boys, 10 girls) and 24 lower fit participants (8 boys, 16 girls). Fifty-two children were eligible for
the study and completed an MRI scan, and four children were excluded from analysis due to inac-
curate gray-white tissue segmentation and motion noise in the reconstructed structural image.

Aerobic Fitness Assessment
The aerobic fitness level of each child was determined by measuring maximal oxygen uptake
(VO2max) using a computerized indirect calorimetry system (ParvoMedics True Max 2400)
during a modified Balke protocol [33]. Specifically, participants ran on a motor-driven tread-
mill at a constant speed with increases in grade increments of 2.5% every 2 minutes until voli-
tional exhaustion. Averages for oxygen uptake (VO2) and respiratory exchange ratio (RER; the
ratio between carbon dioxide and oxygen) were assessed every 20 seconds. In addition, heart
rate was measured throughout the fitness test (using a Polar heart rate monitor [Polar Wear-
Link + 31, Polar Electro, Finland]), and ratings of perceived exertion were assessed every 2
minutes using the children’s OMNI scale [34].

VO2max was defined when oxygen consumption remained at a steady state despite an
increase in workload. Relative peak oxygen consumption was based upon maximal effort as
evidenced by (1) a plateau in oxygen consumption corresponding to an increase of less than
2 mL/kg/min despite an increase in workload, (2) a peak heart rate greater than 185 beats per
minute [33] accompanied by a heart rate plateau (i.e., an increase in work rate without a con-
comitant increase in heart rate) [35], (3) RER greater than 1.0 [36], and/or (4) ratings on the
children’s OMNI scale of perceived exertion greater than 8 [34]. Relative peak oxygen con-
sumption was expressed in mL/kg/min.

Aerobic fitness group assignments (i.e., higher fit and lower fit) were based on whether a
child’s VO2max value fell above the 70th percentile (for age and gender) or below the 30th per-
centile (for age and gender) according to normative data provided by Shvartz and Reibold [37].
Children who did not qualify as higher fit or lower fit were excluded. All participants were
compensated $10/hour for the demographic and VO2max protocol and $20 for participation in
the MRI session.

MR Imaging Protocol and Cortical Thickness Analysis
For all participants, high-resolution (1.3 mm×1.3 mm×1.3 mm) T1- weighted structural brain
images were acquired using a 3DMPRAGE (Magnetization Prepared Rapid Gradient Echo
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Imaging) protocol with 144 contiguous axial slices, collected in ascending fashion parallel to
the anterior and posterior commissures (echo time = 3.87ms, repetition time = 1800ms, field of
view = 256mm, acquisition matrix 192mm×192mm, slice thickness = 1.3mm, and flip
angle = 8°). All images were collected on a 3-T head-only Siemens Allegra MRI scanner.

Automated brain tissue segmentation and reconstruction of cortical surface models were
performed on T1-weighted structural MRI images using the standard recon-all image process-
ing pipeline in FreeSurfer, version 5.2.0 (Released May, 2013; http://surfer-nmr.mgh.harvard.
edu/). FreeSurfer automatically labels cortical surfaces using a Desikan-Killiany cortical parcel-
lation atlas (see 38 for the labeling protocol). That is, vertices along the cortical surface are
assigned a given label based on local surface curvature, average convexity, prior label probabili-
ties, and neighboring vertex labels [38–39]. Data from all participants were processed using the
same Apple OSX 10.8 computer to ensure that the observed findings were not a function of dif-
ferences in software, operating system, or hardware specifications [40].

Specifically, the following processing stream was applied to each participant’s structural
image via FreeSurfer’s recon-all processing pipeline: (1) non-brain tissue removal, (2) Talairach
transformation, (3) creation of representations of the gray/white matter boundaries [41–42],
and (4) calculation of the cortical thickness as the distance between the gray/white matter
boundary and the pial surface in all regions of interest [15]. Our a priori regions of interest
included frontal (anterior, middle, superior), parietal (superior, inferior), temporal (superior,
middle, inferior), and lateral occipital regions, as offered in FreeSurfer’s segmentation algo-
rithms (Fig 1, [43]). These areas provide an exploratory analysis of the whole-brain and
include regions of interest found to change with development [19]. Talairach transforms, skull
stripping, gray–white tissue segmentation, and surface reconstructions were visually checked
for errors (and, as noted, four children were excluded from analysis due to inaccurate gray-
white tissue segmentation and motion noise in the reconstructed structural image).

Fig 1. Cortical thickness regions of interest via Freesurfer (adapted from 43). Starred regions are areas
in which higher fit children showed decreased cortical thickness compared to lower fit children.

doi:10.1371/journal.pone.0134115.g001
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Wide Range Achievement Test (WRAT-3)
Academic achievement was assessed using the paper and pencil WRAT – 3rd edition (Wide
Range, Inc., Wilmington, DE). The test battery included the content areas of reading (i.e., the
number of words pronounced aloud correctly), spelling (i.e., the number of words spelled cor-
rectly), and arithmetic (i.e., the number of mathematical computations completed correctly).
The WRAT-3 has been strongly correlated with the California Achievement Test–Form E and
the Stanford Achievement Test [44].

Statistical Analyses
Given the recruitment of higher and lower aerobic fitness groups, independent t-tests were
conducted to compare demographic and fitness measures. We then performed a multivariate
analysis of variance (MANOVA) to examine associations between aerobic fitness group (higher
fit, lower fit) and cortical thickness in all areas of interest, across left and right hemispheres
(Fig 1). Given a significant multivariate effect, secondary univariate ANOVAs were conducted
to examine differences in cortical thickness between higher fit and lower fit children. Left and
right thickness measures were averaged due to significant correlations between left and right
thickness (all r>0.31, p<0.03) and no primary hypotheses about hemispheric differences as a
function of aerobic fitness.

Additionally, independent t-tests were employed to compareWRAT-3 scores in higher fit and
lower fit children. Pearson correlations were also conducted to determine associations between
cortical thickness and academic achievement. The alpha level for all tests was set at p< .05.

Results
Participant demographic and fitness data are provided in Table 1. Demographic variables (i.e.,
age, gender, IQ, ADHD, pubertal timing, SES) did not differ between fitness groups. Further-
more, consistent with our recruitment of extreme aerobic fitness groups, higher fit participants

Table 1. Participant mean demographic and fitness data (SD) by aerobic fitness group.

Variable Lower Fit Higher Fit

N 24 (16 girls) 24 (10 girls)

Age (years) 9.96 (0.64) 9.98 (0.61)

VO2max (mL/kg/min) 35.65 (5.17) * 52.64 (4.80) *

VO2max Percentile (%) 9.58 (5.55) * 83.08 (4.84) *

K-BITa Composite Score (IQ) 114.17 (15.24) 114.17 (7.63)

K-BITa Crystallized Score (Vocabulary) 108.79 (12.21) 109.04 (7.46)

K-BITa Fluid Score (Matrices) 116.58 (17.61) 116.42 (9.40)

ADHDb 5.96 (4.89) 7.33 (4.02)

Tannerc 1.63 (0.49) 1.67 (0.48)

SESd (median) 2.71 (0.62) 2.63 (0.65)

aKaufman Brief Intelligence Test [28].
bScores on the ADHD Rating Scale V [29].
cPubertal timing assessed using a modified Tanner Staging System (Tanner, 1962; 30].
dSocioeconomic Status. SES was determined by the creation of a trichotomous index based on three

variables: child participation in a free or reduced-price lunch program at school, the highest level of

education obtained by the child’s mother and father, and the number of parents who worked full-time [31].

*Significantly different at p < 0.05.

doi:10.1371/journal.pone.0134115.t001
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(M = 52.6 mL/kg/min, SD = 4.8 mL/kg/min) had higher VO2max than lower fit children
(M = 35.7 mL/kg/min, SD = 5.2 mL/kg/min) as revealed by an independent t-test (t (46) =
11.8, p<0.001).

The overall multivariate test indicated a significant effect of aerobic fitness on cortical thick-
ness (F (22, 27) = 2.41, p = 0.017). Next, univariate ANOVAs were performed to identify the
specific cortical regions that contributed to the overall effect. Higher fit children showed
decreased cortical thickness in superior frontal cortex (F (1, 46) = 4.80, p = 0.034), superior
temporal cortex (F (1, 46) = 5.39, p = 0.025) and lateral occipital cortex (F (1, 46) = 5.67,
p = 0.021), relative to lower fit children (Table 2). There was also specificity to the aerobic fit-
ness differences, with some brain areas not showing aerobic fitness group differences in thick-
ness, including the anterior frontal cortex (F (1, 46) = 2.33, p = 0.13), middle frontal cortex (F
(1, 46) = 1.98, p = 0.17), middle temporal cortex F (1, 46) = 0.54, p = 0.47), inferior temporal
cortex (F (1, 46) = 2.46, p = 0.12), superior parietal cortex (F (1, 46) = 1.21, p = 0.28), and infe-
rior parietal areas (F (1, 46) = 0.63, p = 0.43) (Table 2). All cortical thickness values and effect
sizes (Cohen’s d) are provided in Table 2.

Behaviorally, higher fit children showed superior mathematics achievement compared to
lower fit children (t (46) = 1.98, p = 0.05) on the WRAT-3. No fitness differences were found
for reading or spelling performance (t< 1.1, p>0.3). In addition, across all children, WRAT-3
arithmetic scores were negatively correlated with cortical thickness in anterior frontal cortex
(r = -0.292, p = 0.04), and superior frontal cortex (r = -0.291, p = 0.04) (Table 3) (Fig 2).

Table 2. Cortical thickness (mean, standard deviation) as a function of aerobic fitness group.

Average Cortical Thickness Lower Fit (M, SD) Higher Fit (M, SD) Effect size (Cohen’s d)

Anterior Frontal 3.55 (0.38) 3.38 (0.43) 0.420

Middle Frontal 3.41 (0.12) 3.35 (0.15) 0.515

Superior Frontal 3.85 (0.14)* 3.76 (0.15)* 0.620

Superior Parietal 2.93 (0.15) 2.89 (0.16) 0.258

Inferior Parietal 3.11 (0.18) 3.07 (0.18) 0.222

Superior Temporal 3.31 (0.19)* 3.17 (0.24)* 0.647

Middle Temporal 3.45 (0.16) 3.41 (0.16) 0.250

Inferior Temporal 3.28 (0.14) 3.21 (0.16) 0.466

Lateral Occipital 2.56 (0.19)* 2.46 (0.10)* 0.687

*p<0.05

doi:10.1371/journal.pone.0134115.t002

Table 3. Pearson correlations (p-value) between cortical thickness and academic achievement in all children.

Average Cortical Thickness WRAT-3 Reading WRAT-3 Spelling WRAT-3 Arithmetic

Anterior Frontal -0.208 (0.16) -0.143 (0.33) -0.292 (0.04)*

Middle Frontal 0.032 (0.83) 0.070 (0.64) -0.114 (0.44)

Superior Frontal -0.045 (0.76) 0.013 (0.93) -0.291 (0.04)*

Superior Parietal 0.114 (0.44) 0.093 (0.53) 0.012 (0.93)

Inferior Parietal -0.110 (0.46) -0.082 (0.58) -0.231 (0.16)

Superior Temporal -0.011 (0.94) -0.096 (0.51) -0.048 (0.75)

Middle Temporal 0.018 (0.90) 0.106 (0.48) -0.227 (0.12)

Inferior Temporal 0.209 (0.15) 0.263 (0.07) -0.206 (0.86)

Lateral Occipital 0.064 (0.67) 0.106 (0.47) 0.124 (0.40)

* p<0.05.

doi:10.1371/journal.pone.0134115.t003
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Discussion
Consistent with predictions, our results demonstrate that higher fit 9- and 10-year-old children
(>70th percentile VO2max) showed decreased gray matter thickness in superior frontal cortex,
superior temporal areas, and lateral occipital cortex, coupled with better arithmetic perfor-
mance on a standardized achievement test, compared to lower fit children (<30th percentile
VO2max). Furthermore, cortical gray matter thinning in anterior and superior frontal areas was
associated with superior mathematics achievement. Together, our data raise the possibility that
individual differences in aerobic fitness play a role in childhood cortical gray matter structure
important for scholastic success, particularly on mathematics tests. These novel results add to
our understanding of developmental plasticity in brain and cognition as a function of aerobic
fitness, as well as the neural correlates of performance on measures of importance in
education.

Our results support and extend research on changes in cortical surface organization during
child development [19] and across the lifespan [20]. That is, the brain areas that showed corti-
cal thinning as a function of higher levels of aerobic fitness (i.e., frontal, temporal and occipital
regions) are similar to developing brain areas that undergo significant cortical thinning
between the ages of 5 and 11 (i.e., lateral frontal cortex, temporal regions, and occipital areas)
[19]. Moreover, areas of the dorsal frontal cortex and superior frontal sulcus have demon-
strated non-linear declines in gray matter density with age across the lifespan (age 7–60) [20].
Here, our data raise the possibility that individual differences in aerobic fitness may influence
some areas that show significant changes in cortical thickness during development, and

Fig 2. Significant associations betweenWRAT-3mathematics achievement and cortical thickness.

doi:10.1371/journal.pone.0134115.g002
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perhaps even across the lifespan. Although the methods for segmentation of cortical regions
and calculation of gray matter thickness/density are not identical here and in previous work
[19–20], it is possible that aerobic fitness is one predictor of the developmental trajectory of
cortical structure in certain areas. It is important to note that we also demonstrate some speci-
ficity of the effects, as aerobic fitness was not associated with significant gray matter thickness
differences in areas such as middle frontal, middle temporal and superior and inferior parietal
cortex. Future work should employ whole-brain analyses corrected for multiple comparisons
to continue to explore the specific effects of aerobic fitness on cortical brain structure during
childhood.

We also found that decreased cortical gray matter thickness in anterior and superior frontal
cortex predicted better performance on a paper and pencil test of mathematics achievement
known to correlate with standardized achievement assessments in the classroom [44]. The
results add to the biological markers for academic success [25], and also raise the possibility
that fitness-related differences in cortical structure (in particular, the superior frontal cortex)
have important scholastic implications (in particular, for mathematics achievement). Success-
ful mathematics problem solving is said to involve working memory, the ability to hold rele-
vant information in mind for efficient and effective comprehension [45–47] as well as
inhibition, the ability to ignore irrelevant information [48]. Higher fit children have shown
superior performance on cognitive control tasks that challenge working memory and inhibi-
tory control [11–12, 5–6, 8], as well as superior performance on standardized tests of mathe-
matics and reading [9–10], relative to lower fit children. Together, our study suggests that
differences in cortical gray matter structure in frontal cortex may predict superior arithmetic
performance in school, and aerobic fitness may be one pathway by which brain and cognition
are enhanced during development.

Furthermore, it is interesting to note that we suggest a unique association among aerobic fit-
ness, cortical thickness and specifically arithmetic achievement, rather than global scholastic
success across reading, spelling and arithmetic. Future efforts should be directed toward deter-
mining additional neural biomarkers for scholastic success, and whether these biomarkers pre-
dict performance on select academic subjects, as suggested here, or whether they serve as a
more global index of overall school performance. For instance, the P3 is suggested to be a
marker of both reading and arithmetic performance during childhood [25], and aerobic fitness
has been found to relate to both English/reading and mathematics achievement [9,10]. Inter-
estingly, another study showed specific effects of aerobic exercise training on mathematics
achievement, with no benefit to reading, in a sample of 7- to 11-year-old children [49].
Through additional research, we will better understand how both lifestyle factors and neural
and cognitive processes account for unique variance in scholastic success, known to forecast
future success [26,27]. Mediation models among aerobic fitness, cortical structure, and scholas-
tic success should be tested with larger sample sizes and randomized physical activity interven-
tions to examine whether differences in cortical thickness represent a potential causal pathway
between physical activity, fitness, and elevated cognitive and scholastic performance.

The present study arrives at an important time. Physical activity opportunities during the
school day are being reduced or eliminated in response to mandates for increased academic
classroom time [50], and rising rates of physical inactivity [51–52]. Here we provide additional
evidence that increased aerobic fitness levels may enhance cognitive and brain plasticity, with
potentially significant outcomes related to scholastic achievement. Additionally, we suggest
neural predictors of academic performance. Understanding individual differences in brain
health and academic performance has significant implications for educators and policy makers
who aim to determine strategies and interventions to maximize learning and success across the
lifespan.
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