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Objective: To investigate the relation of physical activity to functional connectivity between brain regions
during an executive control task using phase-locking values (PLVs) and a graph theoretical analysis.
Methods: Twenty active and 20 sedentary young adults had their electroencephalograms recorded during
a spatial priming task. The positive and negative priming conditions require greater amounts of executive
control to inhibit previous trial information relative to control condition.
Results: Beta band PLVs during the priming conditions were larger relative to the control condition 300–
400 ms after stimulus onset only in the active group, suggesting that physically active individuals have
greater functional connectivity between brain regions during task conditions requiring greater amounts
of executive control. Further, graph theoretical analysis was conducted for the PLVs in the 300–400 ms
post-stimulus epoch, with analyses indicating that physical activity is associated with the strength of
functional connectivity between brain regions rather than the structure of network.
Conclusions: Greater functional connectivity between brain regions and efficiency of neural network are
potential mechanisms for the positive relation of physical activity to cognitive function.
Significance: The present study suggests that PLVs and graph theoretical analysis is a useful tool to inves-
tigate the relation of physical activity on human cognition.
� 2010 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights

reserved.
1. Introduction

A growing literature has emerged indicating a positive relation-
ship between physical activity, cognition, and brain using human
and non-human animal models (see Hillman et al. (2008) for re-
view). Historically, most have focused on aging with available re-
search indicating that physical activity is associated with sparing
of age-related cognitive decline. More recently, a growing focus
on executive control (i.e., processes subserving inhibitory control,
working memory, and cognitive flexibility) has developed because
findings have demonstrated that physical activity has a dispropor-
tionately larger relation to this aspect of cognition (Colcombe and
Kramer, 2003; Kramer et al., 1999). This selectively greater effect
for executive control is well-founded given that the prefrontal cor-
tex, which exhibits disproportionately larger age-related degrada-
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tion (Raz et al., 1997), is believed to mediate, to a larger extent, this
aspect of cognition (Funahashi, 2001). Furthermore, investigators
have begun to examine the physical activity–executive control
relationship during earlier periods of the human lifespan. Several
studies have emerged using event-related brain potentials (ERPs)
that have observed a positive relation of physical activity to exec-
utive control in not only older adults, but also in younger adults
(Hillman et al., 2006; Kamijo and Takeda, 2009; Themanson and
Hillman, 2006; Themanson et al., 2006, 2008) and children
(Hillman et al., 2009). Thus, it appears that physical activity may
benefit executive control processes during earlier periods of the
human lifespan.

Despite these interesting findings, the underlying mechanisms
supporting the physical activity–cognition relationship are not
well understood. Accordingly, researchers have investigated a
number of potential mechanisms in both human and non-human
animal models at the molecular, cellular, and systems level. It
has been established that synchronization of the electroencephalo-
graphic (EEG) signal measured across electrode sites closely relates
to the connectivity of perceptual and cognitive functions between
brain regions when time locked to the onset of a stimulus
(Rodriguez et al., 1999). Given that physical activity has been
related to improvements in cognition, the underlying functional
connectivity between brain regions may also be altered to support
ed by Elsevier Ireland Ltd. All rights reserved.
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more effective cognitive performance. However, to our knowledge,
the relationship between physical activity and EEG synchroniza-
tion during cognitive performance has not been reported. It is
important to clarify this issue to elucidate possible mechanisms
underlying the positive relation of physical activity to cognition.
In the present study, we examined the relation of physical activity
on functional connectivity between brain regions using phase-
locking values (PLVs) derived from stimulus-locked EEG data
(Lachaux et al., 1999). PLVs refer to variations in phase synchrony
between EEG signals measured from two electrodes across trials.
The phases of a signal are extracted via a wavelet transformation
and used to calculate the phase difference between electrodes.
Higher PLVs indicate that the phase differences are constant across
trials, suggesting a functional connectivity between brain regions
near these electrodes. PLVs are thought to have an advantage over
other coherence measures used to examine the functional connec-
tivity during cognitive performance (Lachaux et al., 1999), and thus
this phase synchrony index has been used extensively in recent
studies (e.g., Phillips and Takeda, 2009; Rodriguez et al., 1999).

Beyond the examination of functional connectivity between
brain regions, recent development in the methodology of graph
theoretical analysis in the neurosciences allows us to further
examine the efficiency of the entire neural network (i.e., whole
brain) during cognitive tasks (Reijneveld et al., 2007). In graph the-
oretical analysis, a graph is a mathematical representation of a net-
work consisting of a set of nodes with edges lying between them.
In EEG analyses, nodes and edges correspond to electrodes and
the functional connections between them, respectively. Graph the-
oretical analysis assumes EEG synchronization between electrode
pairs above a certain threshold as existence of the functional con-
nectivity between them (Valencia et al., 2008). This is based on the
assumption that functional connectivity between brain regions is
accomplished via neuronal synchrony (Engel et al., 2001). A simpli-
fied example of three networks is illustrated in Fig. 1. The graph
theoretical analysis provides three important indices:

(1) Global efficiency (Eglob) describes (on average) the shortest
path length between nodes (i.e., electrodes). The index indi-
cates the ease of transporting information from one node to
other nodes (i.e., from one brain region to others). In Fig. 1,
the shortest mean path length between node pairs in Net-
work A is 1.82 steps, where in Network B it is 1.68 steps.
For example, four steps are needed to connect from Node 6
to Node 8 in Network A (e.g., 6 ? 4 ? 3 ? 5 ? 8), whereas
the distance between any node pair is less than or equal to
three steps in Network B. Thus, global efficiency is greater
in Network B than in Network A. The global efficiency index
ranges from 0 to 1, with a higher value indicating a more
efficient network structure.
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Fig. 1. Example of networks. Networks A and B have the same degree (k = 3), but
the efficiencies are higher in Network B than Network A. Network C is constructed
by adding three extra connections (thin lines) on Network A, resulted in greater
degree (k = 3.75) and efficiency. When we chose the strongest 12 connections to
examine the basic structure of the Network (i.e., fixed k analysis), Networks A and C
are identical. However, when we chose the connections beyond a certain threshold
of synchronization (i.e., fixed threshold analysis), Network C has available
additional connections such as Nodes 2–6, 6–7, and 7–8, which result in greater
global and local efficiencies.
(2) Local efficiency (Eloc) describes the network’s resilience to
random error. Assume that in Fig. 1, Node 5 is temporally
lost to random error in Network A, Nodes 7 and 8 would
no longer be able to connect the other nodes due to the lost
edges. Such dysfunction would not occur in Network B with
the loss of any one node due to the overlap of edges between
nodes. Thus, local efficiency is greater in Network B than in
Network A. The local efficiency index ranges from 0 to 1,
with higher values indicating a more efficient network
structure.

(3) Degree (k) indicates the mean number of edges that func-
tionally connect each node (i.e., electrode). For example,
k = 3 indicates that on average each node is functionally con-
nected to three other nodes (such as the case in Networks A
and B from Fig. 1). Further, the degree impacts both global
and local efficiencies. Network C from Fig. 1 depicts a graph
in which three connections are added to Network A.
Although most of the connections are the same as Network
A (k = 3), Network C (k = 3.75) has higher efficiencies for
both the global and local indices.

As mentioned previously, the connections between nodes are
defined by the magnitude of EEG synchronization in the graph the-
oretical analysis. Thus, the increasing number of channel pairs
leading to increased EEG synchronization (i.e., PLV P threshold)
increases the degree (k) and results in a more efficient neural net-
work. That is, if the degree (k), above a certain threshold, is differ-
ent between two networks (e.g., as demonstrated by the difference
between A and C in Fig. 1), the network that has the larger degree
(Network C in Fig. 1) could have greater efficiency compared to the
smaller one (Network A in Fig. 1). The fixed threshold graph de-
scribes this difference between two networks. That is, the fixed
threshold graph assumes that electrode pairs having EEG synchro-
nization above a certain threshold are functionally connected. As
shown in the comparison Networks A and B in Fig. 1, the network
efficiency could be different even when the degree (k) is similar be-
tween two networks. In other words, if the structures between two
networks are different, the network efficiency could also be differ-
ent. Graph theoretical analysis allows us to examine such struc-
tural changes independent of the variation of degree (k) by using
a fixed k graph instead of the fixed threshold graph. That is, the
fixed k graph assumes that the fixed number of electrode pairs hav-
ing the greatest EEG synchronization is functionally connected.

In the current study, we reanalyzed data from a previous inves-
tigation on the relationship between physical activity and execu-
tive control during a spatial priming task (Kamijo and Takeda,
2009). Tipper et al. (1990) demonstrated that the response laten-
cies to a target were shortened when the target in the current trial
(probe) appeared at the same location as the previous trial (prime).
This facilitative effect is termed ‘positive priming’ (PP). By contrast,
the response latencies became longer when the probe target ap-
peared at the prime distractor location (Tipper et al., 1990). This
inhibitory effect is termed ‘negative priming’ (NP). It is considered
that the magnitude of the NP effect is related to executive control
ability and the magnitude of the PP effect is negatively correlated
with executive control ability (Kamijo and Takeda, 2009). We ob-
served larger NP effects on reaction time (RT) and P3 latency in ac-
tive individuals relative to sedentary individuals, with PP effects
only observed in the sedentary group. From these findings, we con-
cluded that regular physical activity has a positive relation with
executive control processes in younger adults. Thus, reanalysis of
our previous data would allow us to examine the functional con-
nectivity between brain regions and efficiency of the whole neural
network during executive control processes, which prior reports
have demonstrated are influenced by physical activity (Colcombe
and Kramer, 2003).
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Accordingly, the purpose of this reanalysis was to investigate
the relation of physical activity to functional connectivity between
brain regions and the efficiency of the neural network during a cog-
nitive task requiring variable amounts of executive control in
young adults. It is important to clarify this relationship in young
adults to elucidate possible mechanisms underlying the associa-
tion of physical activity to cognitive function across the lifespan.
To this end, we examined EEG beta and gamma band synchroniza-
tion between electrodes and applied graph theoretical analysis to
assess functional connectivity between brain regions and the effi-
ciency of the neural network (Stam, 2004; Reijneveld et al.,
2007). It has been well established that gamma band (P30 Hz)
activity is associated with a wide variety of cognitive processes
(Fell et al., 2003; Herrmann et al., 2004). Further, lower spectral
frequencies (including beta: 14–30 Hz, and low gamma bands)
are also related to cognitive processes (von Stein et al., 1999), espe-
cially during top-down control of cognitive function (Phillips and
Takeda, 2009). Accordingly, we focused on beta and gamma band
activity in this study.

It was predicted that if structural differences in the neural net-
work as a function of physical activity were associated with greater
efficiency of the neural network underlying cognitive function,
group differences would be observed even in the fixed k graph
(e.g., the difference between Network A to B in Fig. 1). By contrast,
if physical activity had a positive relation with the strength of func-
tional connectivity between brain regions in the absence of struc-
tural differences, group differences would be shown only in the
fixed threshold graph, but not in the fixed k graph (e.g., the differ-
ence between Network A to C in Fig. 1). Lastly, it was predicted that
group differences would be observed selectively during both prim-
ing condition requiring greater amounts of executive control.
2. Methods

2.1. Participants

Forty students (M = 21.1 years, SD = 1.8; 19 females) were re-
cruited from the University of Tsukuba, Japan. All participants re-
ported being free of neurological disorders, cardiovascular
disease, any medications that influenced central nervous system
function, and had (corrected-to-) normal vision. Participants were
separated into physically active and sedentary groups on the basis
of their regular levels of physical activity, which were evaluated by
the International Physical Activity Questionnaire (IPAQ) long form
(http://www.ipaq.ki.se/ipaq.htm). The characteristics of the active
and sedentary groups are summarized in Table 1. The IPAQ scores
(i.e., physical activity levels) were significantly different between
the active and sedentary groups, t’s(38) P6.2, p’s 6.001. All partic-
ipants provided written informed consent that was approved by
Table 1
Group means for participant characteristics.

Active

Female

Sample size (n) 10
Age (years) 19.9 ± 0.9
Height (cm) 164.5 ± 5.3
Weight (kg) 56.0 ± 8.2
Body mass index (kg/m2) 20.7 ± 2.6
Beck Depression Inventory 6.1 ± 4.1
IPAQ total PA score (kcal/week) 8473.3 ± 3479.0
IPAQ leisure-time domain sub-score (kcal/week) 5328.2 ± 2349.8
IPAQ vigorous-intensity sub-score (kcal/week) 4440.0 ± 2260.6

Values are mean ± SD. The maximum obtainable score on the Beck Depression Inventor
the Institutional Human Research Committee (National Institute
of Advanced Industrial Science and Technology, Tsukuba, Japan).
2.2. Spatial priming task

A white fixation point and four 1.8� squares indicating the pos-
sible locations of target and distractor stimuli were provided on a
black background and visible throughout each trial. The vertical vi-
sual angle between the outside upper and the lower positions of
the viewing area was 6.5�, and the horizontal angle between the
two outside positions was also 6.5�. The white letters ‘‘O” and
‘‘X” (1� � 1�) were presented simultaneously at two of the four
possible locations. The stimuli were presented for a 200 ms dura-
tion, with a 3000 ms response window and a 1500 ms response–
stimulus interval. The viewing distance was 57.3 cm. Participants
were instructed to press, as quickly and accurately as possible,
one of four keys (A, X, M and L) on the computer keyboard corre-
sponding to the position of the O (target) and to ignore the location
of the X (distractor) using their index and middle fingers of each
hand. Each trial served as a prime for the following trial (except
the last trial in each experimental block) and as a probe for the pre-
ceding trial (except the first trial in each experimental block). The
positive priming (PP) condition was defined as having the probe
target appear at the same location as the prime target. The negative
priming (NP) condition was defined as having the probe target ap-
pear at the same location as the prime distractor. All other trials
were defined as a control condition. After 72 practice trials, 3
experimental blocks of 72 trials were administered with a brief rest
period between blocks. The trials consisted of 25% PP condition (18
trials), 25% NP condition (18 trials), and 50% control condition (36
trials). The participants were engaged in the task for 7.5 min
(2.5 min � 3 blocks).
2.3. EEG recording

EEG were measured from the following 19 electrode sites of the
International 10–20 system: Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz,
C4, T4, T5, P3, Pz, P4, T6, O1, O2, with AFz as the ground electrode.
To monitor possible artifacts due to eye movements, vertical elec-
trooculogram (EOG) was recorded using electrodes placed above
and below the right orbit, and a horizontal EOG was recorded from
the outer left and right canthi. Prior to testing all electrodes had an
impedance <5 kX. The time constant was set at 5 s with a high-cut
filter of 300 Hz. Continuous data were digitized at a sampling rate
of 1000 Hz. The EEG data were re-referenced to mathematically
averaged earlobes (A1–A2) off-line. Trials with eye movements
(rejection levels: ±80 lV) and response errors were excluded from
the analyses. Based on visual inspection, trials were rejected due to
artifacts during off-line analysis, in addition to the automatic
Sedentary

Male Female Male

10 9 11
20.9 ± 1.4 22.4 ± 1.9 22.2 ± 1.8

172.7 ± 6.8 158.8 ± 5.9 171.5 ± 6.4
64.2 ± 5.0 52.4 ± 6.7 62.8 ± 9.9
21.5 ± 1.4 20.7 ± 1.7 21.3 ± 2.4

3.6 ± 2.5 7.2 ± 5.2 6.3 ± 5.9
9985.4 ± 5739.7 2056.7 ± 1363.3 1404.9 ± 778.8
7856.0 ± 5228.8 680.8 ± 877.3 501.8 ± 508.6
7152.0 ± 4774.3 400.0 ± 678.8 283.6 ± 489.7

y is 63.

http://www.ipaq.ki.se/ipaq.htm


Table 2
Mean RTs (ms) across groups and task conditions.

PP Control NP

Active 409.6 ± 45.0 409.9 ± 46.5 431.6 ± 46.4
Sedentary 428.7 ± 64.1 450.0 ± 94.7 460.5 ± 89.4

Values are mean ± SD.
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rejection. On average, about 35% of trials were discarded due to
artifacts and response errors.

2.4. Data analysis

2.4.1. Phase synchronization
PLVs were computed from stimulus-locked EEG data. As the

first step, the phase u(t,f,n,e) at time (t), frequency (f), trial (n), and
electrode (e) was calculated by convolving the data with a complex
Morlet wavelet. The wavelet was defined as:

Mðt;f Þ ¼ rt

ffiffiffiffi
p
p� ��0:5 � e

�t2

2r2
t � e2ipft

where rt = FTR/2pf. Following Lachaux et al. (1999), we set FTR = 7.
In the present study, we varied f from 12 to 60 Hz at intervals of
2 Hz. PLV for electrode pair (ei, ej) was defined as:

PLVðt;f ;ei ;ejÞ ¼
1
N

XN

n¼1

eið/ðt;f ;n;eiÞ
Þ�/ðt;f ;n;ej Þ

Þ
�����

�����

where N is the number of trials in each condition. PLVs were eval-
uated relative to a 100 ms pre-stimulus baseline.

To examine the regions significantly synchronized, we com-
pared PLVs with surrogate data. The surrogate values were esti-
mated in each participant and condition by the same EEG data as
calculated for PLVs, but after permuting the order of trials for chan-
nel ej. That is, the values were computed by the following equation:

PLVsurrogateðt;f ;ei ;ejÞ ¼
1
M

XM

m¼1

1
N

XN

n¼1

eið/ðt;f ;n;eiÞ
�/ðt;f ;permðtrialÞ;ej Þ

Þ
�����

�����

where M indicates the number of surrogate data. In the present
study, we set M = 200.

It is well known that scalp EEG signals reflect the postsynaptic
activity not only in brain region immediately under the electrode
but also peripheral regions (i.e., volume conduction). Therefore, it
is impossible to specify the sources of EEG signal recorded from
each electrode. Some researchers have proposed a technique for
measuring PLVs by using data from source modeling analysis in-
stead of scalp EEG signals to specify brain regions underlying func-
tional connectivity (Gruber et al., 2006). Adopting the source
modeling analysis may be better to examine the functional connec-
tivity between brain regions. However, the source modeling analy-
sis is based on a solution to the inverse problem, which has no
unique solution. That is, the results from the source modeling anal-
ysis are variable depending on arbitrary initial settings, and are
sometimes far from actual neural activity. In the present study,
we make no assumption for the adequate initial settings for source
modeling analysis. In addition, a high-density EEG recording is re-
quired for the accurate modeling. The present study (19-channel
EEG) was not suitable for the source modeling analysis. Thus, we
used scalp EEG signals for PLV analysis.

For the statistical analysis, we calculated the PLV averaged over
all electrode pairs for 6 time epochs (0–100 ms, 100–200 ms, 200–
300 ms, 300–400 ms, 400–500 ms, and 500–600 ms) � 2 frequency
bands (14–30 and 32–60 Hz for beta and gamma bands). A mixed-
model analysis of variance (ANOVA) was performed with the fol-
lowing factors: 2 (Group: active, sedentary) � 3 (Priming: PP, NP,
control) � 6 (Time) for beta and gamma bands separately.

2.4.2. Graph theoretical analysis
To evaluate the efficiency of the neural network during the task,

PLV was used for a graph theoretical analysis as an index of func-
tional connectivity between electrodes (Valencia et al., 2008). The
graph theoretical analysis provides three indices (Latora and
Marchiori, 2003): degree (k), global efficiency (Eglob), and local
efficiency (Eloc). The maximum k was 18 (i.e., 19 electrodes). The
average efficiency of the unweighted graph G was defined as:

EðGÞ ¼ 1
NðN � 1Þ

X
i–j2G

1
dði;jÞ

where N indicates the number of nodes involved in the graph G and
d(i,j) indicates the shortest path length between Nodes i and j. The
global efficiency was defined as:

Eglob ¼
EðGÞ

EðGidealÞ

where Gideal indicates the ideal case of graph G, in which all nodes
directly connect to each other. The global efficiency index ranges
from 0 to 1, and higher value indicates efficient network structure.
The local efficiency was defined as:

Eloc ¼
1
N

X
i2G

EðGiÞ
E Gideal

i

� �

where Gi indicates the subgraph of the neighbors of Node i. Similar
to the global efficiency, the local efficiency index ranges from 0 to 1,
and higher value indicate more efficient network structure. For the
statistical analysis, a mixed-model ANOVA was performed for each
graph theoretical index with the following factors: 2 (Group: active,
sedentary) � 3 (Priming: PP, NP, control).

Lastly, the network having better global and local efficiencies
relative to the random network with the same k is known as
‘small-world’ network (Watts and Strogatz, 1998). To examine
whether the neural network observed in the present study had a
small-world network structure, the observed graph was compared
with a randomly generated graph with the same degree (k) distri-
bution (i.e., Eglob=ERand

glob ; Eloc=ERand
loc ). That is, if the values are greater

than 1, the neural network is considered to be more efficient than
a random network (i.e., ‘small-network’ structure). For the statisti-
cal analysis, paired t-tests were performed to determine whether
global and local efficiency were greater than 1 in each group and
priming condition.

Analyses with three or more within-subject levels employed the
Greenhouse–Geisser statistic, if the assumption of sphericity was
violated. Post-hoc comparisons were conducted using univariate
ANOVA and Tukey’s HSD multiple-comparison test. The family-
wise alpha value was set at p = .05.

3. Results

3.1. Task performance

Although the task performance data have already been reported
in our previous study (Kamijo and Takeda, 2009), the results are
briefly reviewed here and in Table 2.

For the PP effect on RTs, the analysis revealed a significant
Group � Priming interaction, F(1, 38) = 5.3, p = .03, g2

P ¼ :12: Post-
hoc analyses indicated that RTs in the PP condition were shorter
than in the control condition for the sedentary group (i.e., general
PP), t(19) = 2.6, p = .02, whereas no such difference was observed
for the active group, t(19) = .06, p = .96. For the NP effect on the
RTs, there was a marginal Group � Priming effect, F(1, 38) = 3.5,
p = .07, g2

P ¼ :09. This interaction may indicate larger NP for the
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active group (M = 21.7 ms) relative to the sedentary group
(M = 10.5 ms). No effects were observed for response accuracy.

3.2. Phase synchronization

Fig. 2 (upper) shows PLVs observed in each condition and group.
We calculated the PLVs averaged over all electrode pairs for 6 time
epochs and 2 frequency bands (Fig. 2, lower). The beta band anal-
ysis revealed a Time main effect, F(3.5, 131.5) = 11.6, p < .001,
g2

P ¼ :23, and a Group � Time interaction, F(3.5, 131.5) = 2.6,
p = .04, g2

P ¼ :07, qualified by a Group � Priming � Time interac-
tion, F(5.9, 224.8) = 2.2, p = .02, g2

P ¼ :05. Breaking down the
three-way interaction by examining Group � Priming for each
Time revealed a significant interaction at the 300–400 ms time
epoch, F(2, 76) = 5.0, p = .009, g2

P ¼ :12. Post-hoc univariate ANOVA
revealed a Priming main effect for the active group, F(2, 38) = 4.3,
p = .02, g2

P ¼ :19, but not for the sedentary group, F(2, 38) = 1.6,
p = .22, g2

P ¼ :08. Tukey’s HSD post-hoc analysis indicated greater
synchronization for both priming conditions relative to the control
condition in the active group, p’s <.042. Additional post-hoc t-tests
to examine the group difference for each task condition indicated
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Fig. 2. Time-frequency plots (upper panel) of PLVs in each priming condition and
synchronization compared to the surrogate value (p < .05, uncorrected). White boxes indi
for the following graph theoretical analysis. Line graphs (lower panel) of PLVs for gamma
pairs.
greater synchronization in the active group during the PP condition
relative to the sedentary group, t(38) = 2.7, p = .01, although the
group difference did not reach significance during the NP and con-
trol conditions. Such an interaction was not observed at the other
time epochs. These results indicate functional connectivity be-
tween brain regions was stronger during both priming conditions
relative to the control condition at 300–400 ms after stimulus on-
set only for the active group.

The gamma band analysis revealed a Time main effect,
F(3.2, 122.1) = 6.5, p < .001, g2

P ¼ :15. Tukey’s HSD post-hoc analysis
indicated that mean PLV at the 300–400 ms time epoch was signifi-
cantly greater than 0–100, 100–200, 200–300, and 500–600 ms time
epochs, p’s 6.02. These results indicate functional connectivity be-
tween brain regions was stronger at 300–400 ms after stimulus on-
set relative to the above-mentioned other time epochs across
groups.

3.3. Graph theoretical analysis

Based on the results of the phase synchronization analyses,
we defined a temporal region of interest at the 300–400 ms
Sedentary
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post-stimulus epoch. Figs. 3(left) and 4(left) depict the degree, glo-
bal efficiency, and local efficiency as the function of the threshold
in PLV for beta and gamma bands, respectively. For the statistical
analysis of fixed threshold graphs, several studies have reported
that k-cost (k/possible edges) between 0.2 and 0.25 is sensitive en-
ough to examine small-world properties (Achard and Bullmore,
2007; Liu et al., 2008). It is important to note that this criterion
(around 0.2) of k-cost yields the middle level (about 0.5) of the glo-
bal and local efficiencies in a randomly generated graph. Thus, we
adopted a threshold of 0.05 for beta band and 0.03 for gamma
band, which were defined by the k-cost greater than 0.2 in all con-
ditions. It is important to note that the consistent difference be-
tween conditions of the network efficiency was observed for a
broad PLV cut-off range in the present study. For example, in the
beta band analysis of the active group, the differences in global
and local efficiencies between conditions could be observed in
the PLV cut-off range between 0.02 and 0.12 (Fig. 3, 1st column).
The threshold used in the present study is positioned within this
range. Similar to the fixed threshold analysis, it is necessary to de-
cide the mean number of edges for the fixed k analysis. In the pres-
ent study, EEG was measured from 19 electrodes allowing for a
maximum of 18 possible edges from one node (electrode). Accord-
ingly, we used the criterion of k = 4 for the fixed k analysis (i.e., k-
cost = 4/18 = 0.22).

3.3.1. Beta band
Fig. 3 (3rd column) depicts the degree, global efficiency, and lo-

cal efficiency of the fixed threshold graphs. The degree analysis re-
vealed a Priming main effect, F(2, 76) = 6.2, p = .003, g2

P ¼ :14,
qualified by a Group � Priming interaction, F(2, 76) = 3.9, p = .02,
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g2
P ¼ :09. Post-hoc univariate ANOVA revealed a Priming main ef-

fect for the active group, F(2, 38) = 11.3, p < .001, g2
P ¼ :37, but

not for the sedentary group, F(2, 38) = 0.2, p = .82, g2
P ¼ :01. Tukey’s

HSD post-hoc analyses indicated that degree in the two priming
conditions were larger than the control condition in the active
group, p’s 6.001. These results indicate that the amount of syn-
chronization between electrodes was greater during both priming
conditions relative to the control condition only for the active
group.

The global efficiency analysis revealed a Priming main effect,
F(2, 76) = 6.0, p = .004, g2

P ¼ :14, qualified by a Group � Priming
interaction, F(2, 76) = 4.3, p = .017, g2

P ¼ :10. The post-hoc univari-
ate ANOVA revealed a Priming main effect for the active group,
F(2, 38) = 9.7, p < .001, g2

P ¼ :34, but not for the sedentary group,
F(2, 38) = 0.8, p = .48, g2

P ¼ :04. Tukey’s HSD post-hoc analyses indi-
cated that global efficiency in the two priming conditions were lar-
ger than the control condition for the active group, p’s 6.002. These
results indicate that transporting information from one brain re-
gion to others was enhanced during both priming conditions rela-
tive to the control condition only for the active group.

The local efficiency analysis also revealed a Priming main effect,
F(2, 76) = 4.8, p = .01, g2

P ¼ :11, qualified by a Group � Priming
interaction, F(2, 76) = 3.1, p = .05, g2

P ¼ :08. A post-hoc univariate
ANOVA revealed a Priming main effect for the active group,
F(1.5, 28.8) = 7.8, p = .004, g2

P ¼ :29, but not for the sedentary
group, F(2, 38) = 0.4, p = .65, g2

P ¼ :02. Tukey’s HSD post-hoc analy-
ses indicated that local efficiency in the two priming conditions
were larger than the control condition for the active group, p’s
6.013. These results indicate that resilience to random error was
greater during both priming conditions relative to the control
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condition only for the active group. Thus, the networks for the two
priming conditions were more efficient than the network for the
control conditions in the active, but not in the sedentary group.

In addition, to examine whether the neural network observed in
the present study had a small-world network structure, the ob-
served graph was compared with a randomly generated graph with
the same degree (k) distribution. Fig. 3 (4th column) depicts two
efficiency indices compared with the random graph. Both global
and local efficiencies were greater than 1 in both the active and
sedentary groups, t’s(19) P3.19, p’s 6.005 with the exception of
global efficiency for the PP condition in the sedentary group,
t(19) = 1.44, p = .17. This indicates the observed neural network
was more efficient than a random network (i.e., ‘small-network’
structure). The Group � Priming ANOVA indicated no significant
main effects or interactions for the global or local efficiencies, p’s
P.14.

Finally, to examine the structure of the network, we fixed k = 4
instead of using the fixed threshold (Fig. 3, 5th column). The
Group � Priming ANOVA indicated no significant main effects or
interactions for either global or local efficiency, p’s P.24. This indi-
cates that there were no structural differences between groups.
Thus, the greater efficiency of the priming conditions in the active
group observed in the fixed threshold analysis may depend on a
greater degree (k) rather than a structural difference.

3.3.2. Gamma band
Fig. 4 (3rd column) depicts the degree, global efficiency, and lo-

cal efficiency of the fixed threshold graphs. The degree analysis re-
vealed a Priming main effect, F(2, 76) = 7.3, p = .001, g2

P ¼ :16.
Tukey’s HSD post-hoc analyses indicated that degree in the NP con-
dition was larger than the control condition across groups, p = .001.
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These results indicate that the amount of synchronization between
electrodes was greater during the NP conditions relative to the
control condition across groups.

The global efficiency analysis revealed a Priming main effect,
F(2, 76) = 9.76, p < .001, g2

P ¼ :20. Tukey’s HSD post-hoc analyses
indicated that global efficiency in the two priming conditions were
larger than the control condition across groups, p’s 6.03. These re-
sults indicate that transporting information from one brain region
to others was enhanced during both priming conditions relative to
the control condition across groups.

The local efficiency analysis revealed a Priming main effect,
F(2, 76) = 11.30, p < .001, g2

P ¼ :23. Tukey’s HSD post-hoc analyses
indicated that local efficiency in the two priming conditions were
larger than the control condition across groups, p’s 6.02. These re-
sults indicate that resilience to random error was greater during
both priming conditions relative to the control condition across
groups. Thus, it is considered that the networks for the two prim-
ing conditions were more efficient than the control condition irre-
spective of physical activity.

Similar to beta band analyses, the observed graph was com-
pared with a randomly generated graph with the same degree (k)
distribution. Fig. 4 (4th column) illustrates two efficiency indices
compared with the random graph. Both global and local efficien-
cies were greater than 1 in the active and sedentary groups, t(19)
P2.87, p 6.01. This indicates the observed neural network was
more efficient than a random network (i.e., ‘small-network’ struc-
ture). The Group � Priming ANOVA indicated no significant main
effects or interactions for either the global or local efficiencies,
p’s P.06.

Similar to beta band analyses, we used fixed k = 4 rather than
the fixed threshold (Fig. 4, 5th column). The Group � Priming
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ANOVA indicated no significant main effects or interactions for
either the global or local efficiencies, p’s P.14. Thus, the greater
efficiency of the priming conditions across groups observed in
the fixed threshold analysis may depend on a greater degree (k)
rather than a structural difference.
4. Discussion

In this study, we investigated the relation of physical activity to
functional connectivity between brain regions and efficiency of the
neural network during an executive control task using PLVs and a
graph theoretical analysis, respectively. The main findings indi-
cated that beta band PLVs during both priming conditions were
larger relative to the control condition only for the active group
at the 300–400 ms post-stimulus epoch. For the graph theoretical
analyses, the degree, global efficiency, and local efficiency during
both priming conditions were larger relative to the control condi-
tion only for the active group in the fixed threshold graphs of beta
band synchrony. By contrast, no relation of physical activity and
priming condition were observed in the fixed k graph. These results
suggest that physically active individuals have greater functional
connectivity between brain regions, but that both groups have
similar network structures.
4.1. Phase synchronization

300–400 ms after stimulus presentation, beta band PLVs were
greater for both priming conditions relative to the control condi-
tion only in the active group, indicating greater functional connec-
tivity between brain regions during conditions requiring greater
amounts of executive control. By contrast, no such physical activity
effects were observed during the priming conditions for the gam-
ma band PLV, indicating that physical activity has a selective rela-
tion to the frequencies comprising beta activation. Buschman and
Miller (2007), in a study of non-human primates, suggested that
top-down and bottom-up control processes are mediated by neural
synchrony at lower frequency bands (22–34 Hz; i.e., beta) and
higher frequency bands (36–56 Hz; i.e., gamma), respectively. Sim-
ilar results were reported in a human EEG study (Phillips and Tak-
eda, 2009), indicating that greater PLVs during inefficient visual
search, requiring greater amounts of top-down control, relative
to efficient visual search were observed for the beta band, but
not for the gamma band. Accordingly, the current dataset are con-
sonant with these prior findings and suggest that differences in
physical activity may only be related to conditions requiring great-
er amounts of executive control as reflected by beta band activa-
tion. This finding is also consonant with previous ERP studies
indicating positive relation of physical activity to executive control
processes in young adults (Hillman et al., 2006; Kamijo and Takeda,
2009; Themanson and Hillman, 2006; Themanson et al., 2006,
2008). It is interesting to note that in our previous report (Kamijo
and Takeda, 2009) NP effects on RT and P3 latency in active indi-
viduals were larger than in the sedentary individuals, whereas
the opposite relationship was observed for the PP condition with
a smaller PP effect in active individuals relative to sedentary indi-
viduals. These findings indicate that active individuals could inhi-
bit previous trial information to perform current trial efficiently
irrespective of target or distractor locations, suggesting that regu-
lar physical activity may have a positive relation with inhibitory
control. The present findings indicating stronger functional con-
nectivity reflected by larger beta band PLVs during both priming
conditions for the active group may reflect stronger inhibition for
previous trial information, resulting in the larger NP effect and
the smaller PP effect. Thus, the present study suggests that stron-
ger functional connectivity between brain regions may be one of
the possible underlying mechanisms for the positive relation of
physical activity to executive control.

4.2. Graph theoretical analysis

The fixed threshold analyses indicated that the degree, global
efficiency, and local efficiency in the two priming conditions were
greater than the control condition only for the active group, with
no differences observed for the sedentary group. These results sug-
gest that physical activity might be related to the efficiency of the
neural network underlying executive control processes involved in
spatial priming. By contrast, the physical activity effects disap-
peared in the fixed k analysis, indicating no structural differences
between groups. Taken together, the present results support our
hypothesis that physical activity may have a positive relation with
the strength of functional connectivity between brain regions in
the absence of structural differences (e.g., Network A to C in
Fig. 1) during task conditions requiring greater amounts of execu-
tive control. That is, these data are in opposition to another
hypothesis suggesting that structural differences in a neural net-
work, as a function of physical activity, are associated with the effi-
ciency of that network (e.g., Network A to B in Fig. 1). Similar to
PLVs, greater efficiency of the priming conditions reflected by the
graph theoretical analyses in the active group were only observed
for the beta band, suggesting that top-down control may be selec-
tively associated with physical activity. The present graph theoret-
ical analyses further indicates positive differences in the efficiency
of the neural network as a function of physical activity.

4.3. General discussion

The present results indicate that functional connectivity be-
tween brain regions and efficiency of the neural network during
an executive control task may be related to physical activity partic-
ipation. However, such a finding does not directly shed light on the
underlying mechanisms responsible for physical activity–cognition
relation. Accordingly, speculation for this positive relationship may
be garnered from several lines of research using non-human ani-
mal models. Such studies have indicated that physical activity
engendered via wheel running increases nerve growth factors such
as brain-derived neurotrophin factor (BDNF; Neeper et al., 1995)
and insulin-like growth factor I (Carro et al., 2001). Increases in
nerve growth factors may relate to increases in the number of syn-
aptic connections and the development of new neurons that sup-
port learning and memory (Lu and Chow, 1999; van Praag et al.,
1999). Recently, human studies have also indicated that aerobic fit-
ness training increases plasma concentration of peripheral BDNF
(Zoladz et al., 2008), which may reflect cortical BDNF levels (Karege
et al., 2002). Accordingly, if these changes were to occur in the hu-
man brain, it may provide one mechanism for differences in func-
tional connectivity between brain regions and efficiency of the
neural network as a function of physical activity.

It is noteworthy that physical activity effects were dependent
on task conditions (i.e., executive control requirements) in the
present study. A recent functional magnetic resonance imaging
study demonstrated that physical activity improves functional
connectivity between brain regions during a task requiring variable
amounts of executive control. Specifically, Colcombe et al. (2004)
examined the relationship between aerobic fitness and the atten-
tional network supporting performance on a modified flanker task,
requiring inhibitory control, via both cross-sectional assessment
and a randomized clinical trial. They found increased activation
of task-related prefrontal and parietal brain regions and decreased
activity in the anterior cingulate cortex (ACC), with better cognitive
performance in higher-fit compared to lower-fit older adults, and
in aerobically trained compared to nonaerobic control older adults
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(Colcombe et al., 2004). These results suggest that increased atten-
tional control (increases in prefrontal and parietal activation) may
result in decreases in activation of conflict monitoring processes
(reduction in ACC activation) in higher-fit and aerobically trained
older adults. Although the previous study did not directly examine
functional connectivity (Colcombe et al., 2004), it appears that bet-
ter cognitive performance in higher-fit and aerobically trained
individuals are associated with the more effective activation of
the neural networks from lower-fit and aerobically untrained indi-
viduals (i.e., greater efficiency of neural network). Thus, physical
activity may improve functional connectivity requiring inhibitory
control, supporting the present task condition-dependent
association.

4.4. Limitations

The present study was cross-sectional in design, and thus other
factors besides physical activity level may have contributed to the
observed activity group differences. However, this possibility was
minimized through the collection of variables that have been
found to relate to physical activity participation and cognitive
function, with similar findings observed across groups for self-re-
ported depressive symptoms (Beck Depression Inventory), educa-
tion (recruitment of students from same university), and the
calculation of body mass index. Despite these efforts, future re-
search using longitudinal studies of randomized control interven-
tions are needed to better establish a direct effect of physical
activity to functional connectivity between brain regions and effi-
ciency of the neural network.

Given that the present study only focused on young adults, it re-
mains unclear whether the mechanisms underlying the relation of
physical activity on cognition are age-dependent. If underlying
mechanisms for the physical activity–cognition relationship differ
based on age, graph theoretical analyses may be able to detect
age-dependent difference. That is, for example, if physical activity
changes the structure of the network for older adults, the fixed k
graph should differ between physically active and sedentary older
adults. Further studies are needed to clarify this issue using the
graph theoretical analysis.

4.5. Conclusion

In this study, we observed that the relation of physical activity
to functional connectivity between brain regions and efficiency of
the neural network may serve as potential mechanisms for the po-
sitive relation of physical activity to executive function in young
adults. Additionally, this relation was observed to be unrelated to
differences in network structures in the young adults sampled.
The present study also suggests the PLVs and graph theoretical
analysis may be a useful tool to investigate the relation of physical
activity on human cognition during young adulthood. Future stud-
ies using this analysis may contribute to our understanding of the
positive relation of physical activity on brain and cognition across
the lifespan.
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